Method Article
Visualization of the coronary vessels is critical to advancing our understanding of cardiovascular diseases. Here we describe a method for perfusing murine coronary vasculature with a radiopaque silicone rubber (Microfil), in preparation for micro-Computed Tomography (μCT) imaging.
Visualization of the vasculature is becoming increasingly important for understanding many different disease states. While several techniques exist for imaging vasculature, few are able to visualize the vascular network as a whole while extending to a resolution that includes the smaller vessels1,2. Additionally, many vascular casting techniques destroy the surrounding tissue, preventing further analysis of the sample3-5. One method which circumvents these issues is micro-Computed Tomography (μCT). μCT imaging can scan at resolutions <10 microns, is capable of producing 3D reconstructions of the vascular network, and leaves the tissue intact for subsequent analysis (e.g., histology and morphometry)6-11. However, imaging vessels by ex vivo μCT methods requires that the vessels be filled with a radiopaque compound. As such, the accurate representation of vasculature produced by μCT imaging is contingent upon reliable and complete filling of the vessels. In this protocol, we describe a technique for filling mouse coronary vessels in preparation for μCT imaging.
Two predominate techniques exist for filling the coronary vasculature: in vivo via cannulation and retrograde perfusion of the aorta (or a branch off the aortic arch) 12-14, or ex vivo via a Langendorff perfusion system 15-17. Here we describe an in vivo aortic cannulation method which has been specifically designed to ensure filling of all vessels. We use a low viscosity radiopaque compound called Microfil which can perfuse through the smallest vessels to fill all the capillaries, as well as both the arterial and venous sides of the vascular network. Vessels are perfused with buffer using a pressurized perfusion system, and then filled with Microfil. To ensure that Microfil fills the small higher resistance vessels, we ligate the large branches emanating from the aorta, which diverts the Microfil into the coronaries. Once filling is complete, to prevent the elastic nature of cardiac tissue from squeezing Microfil out of some vessels, we ligate accessible major vascular exit points immediately after filling. Therefore, our technique is optimized for complete filling and maximum retention of the filling agent, enabling visualization of the complete coronary vascular network – arteries, capillaries, and veins alike.
1. Preparations before starting
2. Exposing the heart and cannulating the aorta
3. Perfusion and Microfil injection
4. Representative Results
Vessels which are effectively perfused by Microfil will have continuous, unbroken Microfil throughout the vessels (Fig. 3A). The extent of filling of the coronary vessels can be judged by eye; veins are epicardially located18, and can be easily observed (Fig 3A, arrowhead); arteries, which are more intramyocardial18, are also visible through the surface of the heart (Fig 3A, arrow). Capillary filling is also evident, as cardiac tissue has a very high density of capillaries, and therefore, when the capillaries fill, the cardiac tissue will flush with the color of the Microfil (Fig. 3A, star). Thus, any vascular networks that failed to fill will be noticeable due to the lack of Microfil (Fig. 3B, C).
Discontinuities in the Microfil (asterisks in Fig 3B) often appear because the hydrophobic nature of the Microfil will cause it to contract into itself and cause "breaks" within filled vessels. These "breaks" can be reduced if pressure within the vessels is maintained through proper tie-offs of the vascular exit points from the heart. Other discontinuities can be caused by air bubbles within the microfil. To prevent the introduction of air, make sure the angiocatheter is fully submerged in water when switching from the perfusion apparatus to the Microfil syringe. If an air bubble is introduced, it can often be removed simply by continuing the Microfil perfusion until the bubble has been pushed through and out of the coronary vessels.
Vascular networks may not fill completely if a portion of the vascular bed is blocked (Fig. 3B, arrow). While Heparin inhibits the formation of blood clots, occasional blockages may still occur due to incomplete Heparin perfusion prior to beginning the procedure, or due to other unknown factors. If a blockage occurs, there is, to our knowledge, no method for dislodging the blockage to complete the vascular fill. Incomplete filling can also result if too little pressure is used during filling, as the Microfil will not be forced into all the vascular beds and capillary networks (Fig. 3C). Conversely, too much pressure can cause the capillaries to burst and extravasate Microfil into the surrounding tissue (Fig. 3D).
Figure 1. Overview of the Microfil perfusion scheme. (A) The aorta and the PVC are cut at approximately the level of the diaphragm. (B) The ascending aorta is cannulated with an angiocatheter. (C) Vasodilation buffer is perfused through the vessels, driven by the pressure perfusion apparatus (not pictured), while (D) the three main branches off the aortic arch are ligated. (E) 4% PFA is perfused through the coronaries while both Anterior Vena Cavas are ligated. (F) Using a syringe, Microfil is perfused through the coronaries until it is observed exiting from the PVC.
Figure 2. Perfusion Apparatus. Two Erlenmeyer flasks, each filled with either Vasodilation buffer or 4% PFA, are joined and pressurized through tubes connected to their sidearms. The system is pressurized through manual pumping of the bulb, and a pressure gauge is connected to one of the flasks to allow monitoring and maintenance of pressure. Small tubes extend through rubber stoppers and down into the fluid in each flask. Pressure entering from the sidearms pumps the fluid from each flask out these smaller tubes. The tubes then merge at a stopcock which only allows fluid to flow from one flask at a time.
Figure 3. Sample Microfilled hearts. (A) Vessels that are filled well will have few (if any) breaks in the Microfil, and the heart tissue will be tinged the color of the Microfil due to the filled capillaries (star, and compare with C). Both arteries (arrow – Left Anterior Descending Artery) and veins (arrowhead – Left Coronary Vein) are visible through the heart surface. (B) A heart with breaks in the microfil (asterisks) as well as blockages in some vessels that prevented complete Microfil penetration. The blocked vessels remain red (arrow), as the blood was not flushed out during the perfusion process. (C) A heart with vessels that were incompletely filled. Notice the tissue has not taken on the yellow color of the Microfil, indicating the Microfil did not penetrate into the capillaries. (D) A heart where the capillaries burst during filling, causing the Microfil to leak into the surrounding tissue (arrow).
Cardiac tissue has a very high metabolic demand, and therefore requires a constant supply of nutrients and oxygen from the blood delivered by the coronary vasculature. Diseases of the coronary vessels, which decrease coronary function due to vessel stenosis and blockage, can lead to tissue hypoxia and ischemia, and put affected patients at risk for myocardial infarction and irreparable damage to the heart muscle. A better understanding of the diseased state of these vessels is necessary, and critical to our ability to study coronary vessels is visualization of the vasculature. Here, we present a method for preparing murine coronary vasculature for ex vivo imaging by filling the vasculature with a radiopaque material. This protocol was specifically designed to ensure complete filling, and subsequently visualization, of all coronary vessels including capillaries.
To ensure complete filling of all capillaries, the filling agent, Microfil, must be injected into a partially closed system that will force the Microfil into the smaller, higher resistance vessels within the vascular network. To create this partial closure within our in vivo filling system, we ligate the three larger, low resistance arteries branching from the aortic arch. While this does not exclude all other potential "leakage" points, the remaining vessels (principally the intercostal arteries) are sufficiently small that any pressure lost through them does not interfere with complete filling of the coronary vascular system. Once the Microfil has perfused all the vessels in the heart, the innate elastic nature of the cardiac and vascular tissue will squeeze the Microfil out of some vessels. To prevent this loss of Microfil, we ligate all large and accessible exit points, namely, both superior vena cavae, the posterior vena cava, and the aorta, after the coronary vasculature is completely perfused. In this way, pressure is maintained in the heart until the Microfil polymerizes, allowing the Microfil to conform to the vessel structure under normal physiological blood pressure.
Alternatively, if visualization of the capillaries is not required, it is also possible to fill only the arterial or only the venous vascular beds. More viscous versions of Microfil can be mixed using a high viscosity diluent (available from FlowTech). The more viscous perfusate is unable to penetrate the capillaries, and therefore allows visualization of only the arteries, or only the veins if perfused from the venous side. In addition, the protocol presented here can easily be adapted to other species or non-adult mice. Scaling the procedure to appropriately match the size of the animal simply requires that the catheter and the perfusion tubing are properly sized to the animal's aorta so as to minimize leaking and prevent stretching or breaking. The volumes of fluids injected (i.e. heparin, saturated KCl, and the Microfil) must also be appropriately scaled.
Our protocol was specifically designed for injection of Microfil and imaging by μCT, however, it can easily be adapted for other filling agents, either for μCT analysis, or other ex vivo imaging techniques. When looking for μCT compatible fillers, there are several options of radiopaque dyes, as many substances used for filling and studying vasculature via other imaging methods (e.g. acrylic) can be infused with radio opaque material, such as a lead pigment9 or an osmium solution3. Regardless of the filling agent utilized, μCT imaging offers the advantage that the results can be reconstructed into a 3D model to provide vascular measurements as well as structural information about the branching pattern of the filled coronary vessels 6,7,14,19. In addition, imaging by μCT preserves the surrounding tissue, thus allowing for additional analyses after the scan. Thus, filled and scanned hearts can be processed for histological analysis, and sections stained for various markers can be aligned with μCT data to correlate arterial/venous identity, the presence of smooth muscle coats, or additional histological indices.
Other common vascular imaging techniques also require vascular filling and our protocol can easily be adapted for perfusing the coronaries with any of these other filling agents. Scanning Electron Microscopy (SEM) requires filling the vessels and then dissolving the soft tissue away from the established vascular cast in a process called corrosion casting. In order to maintain the shape of the vessels without the support of the surrounding soft tissue, the filling agent must be strong and non-brittle: often an acrylic resin (e.g. Mercox, Batson's)3,20,21. While SEM provides scanning resolutions vastly superior to that of μCT imaging 22, the corrosion casting procedure destroys the tissue, preventing any additional tissue analysis. Another method of ex vivo imaging of the coronary vasculature, Optical Projection Tomography (OPT), can detect visible or near-visible light, and thus allows for the detection of fluorescent signals in addition to chromogenic precipitates such as the purple precipitate produced by alkaline phosphatase conversion of BCIP/NBT (5-bromo-4-chloro-3-indolyl phosphate/4-nitro blue tetrazolium)23-25. Visualization of vessels, therefore, can be accomplished either by filling with a fluorescent substance (e.g. PU4ii: a polyurethane resin 3, or fluorescein infused dextran26), or through non-filling methods, such as whole-mount immunodetection via either fluorescence or a histochemical chromogenic precipitate (e.g. BCIP/NBT) 23. OPT imaging can achieve resolutions slightly better than that of μCT (to around 1 micron); however, for both the filling and the immunodetection methods the surrounding soft tissue must be chemically cleared, which may disrupt some antigens for histological analysis post-scanning.
There are also several methods for imaging the coronary vasculature that do not require vascular filling or immunodetection, and as such can be performed in vivo. One technique, Contrast Enhanced High Resolution Ultrasound (CEHRUS), utilizes gas filled microbubbles as a contrast agent. Injection of these microbubbles into the blood stream allows for visualization of the flow of blood with real-time flow measurements down to the capillary level, but it does not provide a 3D view of the imaged vessels 2,27-31. Another method, Magnetic Resonance Angiography (MRA) has also been used to image coronary vessels 32-34, and recent advances in MRA have extended its imaging capabilities to obtain real-time blood flow measurements 35,36. While MRA can produce 3D reconstructions of the vessels imaged, the resolution of MRA is currently limited to around 100 microns, and therefore fails to identify smaller vessels (capillaries, arterioles and venules).
Since both CEHRUS and MRA can be performed on live animals, they offer the advantage of repeatedly and non-invasively monitoring blood flow and vascular development. However, the relatively low resolution of MRA and the lack of 3D capabilities from CEHRUS preclude imaging of the coronary network as a whole. Thus, the ex vivo imaging techniques which require vascular filling agents or immunodetection are important for obtaining high resolution 3D information of the coronary vascular system, while the in vivo techniques provide valuable information regarding functionality of the vascular network (i.e., flow data) over time. Combining in vivo time course analysis with end point ex vivo imaging provides a powerful system for study of the coronary vasculature.
Mice were handled with methods approved by the Institutional Animal Care and Use Committee of the University of Washington and in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996).
We thank Dr. Kelly Stevens for initial trials of the protocol, Dr. Michael Simons, Dr. Kip Hauch, and members of both of their labs for general discussion.
This work is support by NIH grants HL087513 and P01 HL094374.
Name | Company | Catalog Number | Comments |
1 ml syringes | ![]() | BD-309602 | |
1/2cc insulin syringes with permanently attached 29G ½’ needles | ![]() | BD-309306 | |
2" x 2" Gauze pads | Med101store.com | SKU 2208 | |
24G ¾" Angiocath IV catheter | ![]() | BD-381112 | |
26G ½"gauge needles | ![]() | BD-305111 | |
Adenosine | ![]() | A9251 | 1g/L in PBS for Vasodilation Buffer (with Papaverine) |
Angled Graefe Forceps | ![]() | 11052-10 | |
Cotton-tipped applicators: 6" non-sterile | ![]() | C15055-006 | |
Curved Surgical Scissors | ![]() | 14085-09 | |
Dissecting stereoscope and light source | ![]() | NA | NA |
Dissecting Tray, 11.5 x 7.5 inches | ![]() | YO-10915-12 | Filled with tar for pinning down the mouse |
Fine Curved Forceps | ![]() | FD281R | Need two |
Heparin, 5000 U/ml stock | ![]() | NDC 63323-047-10 | 1:100 dilution in water |
KCl | ![]() | P217 | Saturated solution in H2O |
Ketamin (Ketaset), 100 mg/ml stock | Fort Dodge Animal Health | NDC 0856-2013-01 | Mixed as 130 mg/kg body weight, with Xylazine in 0.9% saline |
Microfil | ![]() | MV-122 (yellow). Other color options are also available. | Mix 1:1 by weight, with 10% by volume of curing agent. Prepare just before injection, and vortex to ensure it is well mixed |
Non-sterile Suture: 6-0, braided silk | ![]() | 723287 | |
Papaverine | ![]() | NDC 0517-4010-01 | 4mg/L in PBS for Vasodilation Buffer (with Adenosine) |
Paraformaldehyde | ![]() | P6148 | Prepared as 4% solution |
Perfusion Apparatus | See figure 2 | ||
Spring Scissors | ![]() | 15018-10 | |
Xylazine (Anased), 20 mg/gl stock | ![]() | NADA #139-236 | Mixed as 8.8 mg/kg body weight, with Ketamin in 0.9% saline |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved