JoVE Logo

Oturum Aç

7.14 : Cable: Problem Solving

When dealing with a cable that is fixed to two supports and subjected to uniform loading, it is crucial to determine the maximum tension in the cable. This process can be broken down into several key steps, as outlined below:

Static equilibrium, cable tension diagram, w=5 kN/m, L=10 m, h=1 m, structural analysis.

Analyze the problem: Begin by understanding the given scenario and the conditions of the cable. Identify the supports, the type of loading, and any other relevant information.

Determine the cable's shape equation: Use the principles of equilibrium and the cable's properties to establish the shape equation that describes the cable's curve. This equation relates the cable's shape to the applied load.

Integral equation diagram, depicting nested integrals in mathematical analysis.

Integrate the equation: Integrate the shape equation to obtain a function that represents the shape of the cable. This integration process allows you to determine the constants in the equation.  By applying the boundary conditions at the origin, the value of one of the integration constants can be determined.

Structural analysis equation: \( y = \frac{1}{F_H} \left( \frac{wx^2}{2} + C_1x + C_2 \right) \).

Find the slope: Take the first derivative of the cable's shape equation to determine the slope of the cable at any given point. Apply the boundary conditions for the slope at the origin to obtain the value of another integration constant.

Calculate the horizontal tensile force: By substituting the integration constants and the position coordinates of the support into the shape equation. Rearrange the terms to find the horizontal tensile force acting on the cable.

Static equilibrium equation \( F_H = \frac{w_0L^2}{8h} \), formula diagram for force calculation.

Determine the angle: Use the slope equation to calculate the angle of the cable at various points. Find the location along the cable where the angle is at its maximum, usually near the supports. Utilize trigonometric relationships to express the maximum tension in terms of the horizontal tensile force and the angle of the cable.

Static equilibrium formula: θmax=tan^(-1)(w₀L/2Fₕ), mathematical equation representation.

Find the maximum tension: Substitute the horizontal tension equation and the known values into the maximum tension equation. This will allow you to calculate the maximum tension in the cable.

Static equilibrium equation, \(T_{\text{max}} = \frac{w_0 L}{2} \sqrt{1 + \left(\frac{L}{4h}\right)^2}\).

Etiketler

Cable TensionProblem SolvingUniform LoadingShape EquationEquilibrium PrinciplesIntegration ProcessSlope DeterminationHorizontal Tensile ForceTrigonometric RelationshipsMaximum Tension Calculation

Bölümden 7:

article

Now Playing

7.14 : Cable: Problem Solving

İç Kuvvetler

313 Görüntüleme Sayısı

article

7.1 : Sözleşmeyi İmzala

İç Kuvvetler

1.9K Görüntüleme Sayısı

article

7.2 : Normal ve Kesme Kuvveti

İç Kuvvetler

2.1K Görüntüleme Sayısı

article

7.3 : Eğilme ve burulma momentleri

İç Kuvvetler

3.5K Görüntüleme Sayısı

article

7.4 : Yapı Elemanlarında İç Yüklemeler: Problem Çözme

İç Kuvvetler

1.2K Görüntüleme Sayısı

article

7.5 : Kiriş

İç Kuvvetler

1.3K Görüntüleme Sayısı

article

7.6 : Kesme Diyagramı

İç Kuvvetler

743 Görüntüleme Sayısı

article

7.7 : Eğilme Momenti Diyagramı

İç Kuvvetler

996 Görüntüleme Sayısı

article

7.8 : Dağıtılmış yük ve kesme arasındaki ilişki

İç Kuvvetler

604 Görüntüleme Sayısı

article

7.9 : Kesme ve eğilme momenti arasındaki ilişki

İç Kuvvetler

979 Görüntüleme Sayısı

article

7.10 : Kesme ve Eğilme Momenti Diyagramı: Problem Çözme

İç Kuvvetler

1.3K Görüntüleme Sayısı

article

7.11 : Konsantre yüklere maruz kalan kablo

İç Kuvvetler

797 Görüntüleme Sayısı

article

7.12 : Dağıtılmış bir yüke maruz kalan kablo

İç Kuvvetler

642 Görüntüleme Sayısı

article

7.13 : Kendi ağırlığına maruz kalan kablo

İç Kuvvetler

428 Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır