JoVE Logo

Войдите в систему

7.14 : Cable: Problem Solving

When dealing with a cable that is fixed to two supports and subjected to uniform loading, it is crucial to determine the maximum tension in the cable. This process can be broken down into several key steps, as outlined below:

Static equilibrium, cable tension diagram, w=5 kN/m, L=10 m, h=1 m, structural analysis.

Analyze the problem: Begin by understanding the given scenario and the conditions of the cable. Identify the supports, the type of loading, and any other relevant information.

Determine the cable's shape equation: Use the principles of equilibrium and the cable's properties to establish the shape equation that describes the cable's curve. This equation relates the cable's shape to the applied load.

Integral equation diagram, depicting nested integrals in mathematical analysis.

Integrate the equation: Integrate the shape equation to obtain a function that represents the shape of the cable. This integration process allows you to determine the constants in the equation.  By applying the boundary conditions at the origin, the value of one of the integration constants can be determined.

Structural analysis equation: \( y = \frac{1}{F_H} \left( \frac{wx^2}{2} + C_1x + C_2 \right) \).

Find the slope: Take the first derivative of the cable's shape equation to determine the slope of the cable at any given point. Apply the boundary conditions for the slope at the origin to obtain the value of another integration constant.

Calculate the horizontal tensile force: By substituting the integration constants and the position coordinates of the support into the shape equation. Rearrange the terms to find the horizontal tensile force acting on the cable.

Static equilibrium equation \( F_H = \frac{w_0L^2}{8h} \), formula diagram for force calculation.

Determine the angle: Use the slope equation to calculate the angle of the cable at various points. Find the location along the cable where the angle is at its maximum, usually near the supports. Utilize trigonometric relationships to express the maximum tension in terms of the horizontal tensile force and the angle of the cable.

Static equilibrium formula: θmax=tan^(-1)(w₀L/2Fₕ), mathematical equation representation.

Find the maximum tension: Substitute the horizontal tension equation and the known values into the maximum tension equation. This will allow you to calculate the maximum tension in the cable.

Static equilibrium equation, \(T_{\text{max}} = \frac{w_0 L}{2} \sqrt{1 + \left(\frac{L}{4h}\right)^2}\).

Теги

Cable TensionProblem SolvingUniform LoadingShape EquationEquilibrium PrinciplesIntegration ProcessSlope DeterminationHorizontal Tensile ForceTrigonometric RelationshipsMaximum Tension Calculation

Из главы 7:

article

Now Playing

7.14 : Cable: Problem Solving

Internal Forces

315 Просмотры

article

7.1 : Правило знаков

Internal Forces

1.9K Просмотры

article

7.2 : Нормальная и поперечная сила

Internal Forces

2.1K Просмотры

article

7.3 : Изгибающие и крутящие моменты

Internal Forces

3.5K Просмотры

article

7.4 : Внутренние нагрузки в элементах конструкций: решение проблемы

Internal Forces

1.2K Просмотры

article

7.5 : Балки

Internal Forces

1.3K Просмотры

article

7.6 : Диаграмма сдвига

Internal Forces

745 Просмотры

article

7.7 : Диаграмма изгибающего момента

Internal Forces

999 Просмотры

article

7.8 : Зависимость между распределенной нагрузкой и сдвигом

Internal Forces

604 Просмотры

article

7.9 : Соотношение между сдвигом и изгибающим моментом

Internal Forces

981 Просмотры

article

7.10 : Диаграмма сдвиговых и изгибающих моментов: решение проблем

Internal Forces

1.3K Просмотры

article

7.11 : Кабель, подвергающийся воздействию сосредоточенных нагрузок

Internal Forces

797 Просмотры

article

7.12 : Кабель под действием распределенной нагрузки

Internal Forces

646 Просмотры

article

7.13 : Кабель под действием собственного веса

Internal Forces

428 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены