JoVE Logo

Anmelden

7.14 : Cable: Problem Solving

When dealing with a cable that is fixed to two supports and subjected to uniform loading, it is crucial to determine the maximum tension in the cable. This process can be broken down into several key steps, as outlined below:

Static equilibrium, cable tension diagram, w=5 kN/m, L=10 m, h=1 m, structural analysis.

Analyze the problem: Begin by understanding the given scenario and the conditions of the cable. Identify the supports, the type of loading, and any other relevant information.

Determine the cable's shape equation: Use the principles of equilibrium and the cable's properties to establish the shape equation that describes the cable's curve. This equation relates the cable's shape to the applied load.

Integral equation diagram, depicting nested integrals in mathematical analysis.

Integrate the equation: Integrate the shape equation to obtain a function that represents the shape of the cable. This integration process allows you to determine the constants in the equation.  By applying the boundary conditions at the origin, the value of one of the integration constants can be determined.

Structural analysis equation: \( y = \frac{1}{F_H} \left( \frac{wx^2}{2} + C_1x + C_2 \right) \).

Find the slope: Take the first derivative of the cable's shape equation to determine the slope of the cable at any given point. Apply the boundary conditions for the slope at the origin to obtain the value of another integration constant.

Calculate the horizontal tensile force: By substituting the integration constants and the position coordinates of the support into the shape equation. Rearrange the terms to find the horizontal tensile force acting on the cable.

Static equilibrium equation \( F_H = \frac{w_0L^2}{8h} \), formula diagram for force calculation.

Determine the angle: Use the slope equation to calculate the angle of the cable at various points. Find the location along the cable where the angle is at its maximum, usually near the supports. Utilize trigonometric relationships to express the maximum tension in terms of the horizontal tensile force and the angle of the cable.

Static equilibrium formula: θmax=tan^(-1)(w₀L/2Fₕ), mathematical equation representation.

Find the maximum tension: Substitute the horizontal tension equation and the known values into the maximum tension equation. This will allow you to calculate the maximum tension in the cable.

Static equilibrium equation, \(T_{\text{max}} = \frac{w_0 L}{2} \sqrt{1 + \left(\frac{L}{4h}\right)^2}\).

Tags

Cable TensionProblem SolvingUniform LoadingShape EquationEquilibrium PrinciplesIntegration ProcessSlope DeterminationHorizontal Tensile ForceTrigonometric RelationshipsMaximum Tension Calculation

Aus Kapitel 7:

article

Now Playing

7.14 : Cable: Problem Solving

Internal Forces

315 Ansichten

article

7.1 : Konvention unterzeichnen

Internal Forces

1.9K Ansichten

article

7.2 : Normal- und Querkraft

Internal Forces

2.1K Ansichten

article

7.3 : Biege- und Torsionsmomente

Internal Forces

3.5K Ansichten

article

7.4 : Innere Lasten in Strukturbauteilen: Problemlösung

Internal Forces

1.2K Ansichten

article

7.5 : Balken

Internal Forces

1.3K Ansichten

article

7.6 : Scherdiagramm

Internal Forces

745 Ansichten

article

7.7 : Biegemoment-Diagramm

Internal Forces

999 Ansichten

article

7.8 : Beziehung zwischen der verteilten Last und der Schubkraft

Internal Forces

604 Ansichten

article

7.9 : Beziehung zwischen Schub- und Biegemoment

Internal Forces

981 Ansichten

article

7.10 : Schub- und Biegemomentdiagramm: Problemlösung

Internal Forces

1.3K Ansichten

article

7.11 : Kabel, die konzentrierten Lasten ausgesetzt sind

Internal Forces

797 Ansichten

article

7.12 : Kabel, das einer verteilten Last ausgesetzt ist

Internal Forces

646 Ansichten

article

7.13 : Kabel, das seinem Eigengewicht ausgesetzt ist

Internal Forces

428 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten