JoVE Logo

Oturum Aç

25.2 : Spherical and Cylindrical Capacitor

A spherical capacitor consists of two concentric conducting spherical shells of radii R1 (inner shell) and R2 (outer shell). The shells have  equal and opposite charges of +Q and −Q, respectively. For an isolated conducting spherical capacitor, the radius of the outer shell can be considered to be infinite.

Conventionally, considering the  symmetry, the electric field between the concentric shells of a spherical capacitor is directed radially outward. The magnitude of the field, calculated by applying Gauss’s law over a spherical Gaussian surface of radius r concentric with the shells, is given by,

Gauss's law equation diagram showing electric flux, integral form, electrostatics concept.

Substitution of the electric field into the electric field-capacitance relation gives the electric potential as,

Electric potential equation \( V = \frac{Q}{4\pi\varepsilon_0} \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \).

However, since the radius of the second sphere is infinite, the potential is given by,

Electrostatics equation, Coulomb's law, V=Q/(4πε₀(1/R₁)), physics formula.

Since, the ratio of charge to potential difference is the capacitance, the capacitance of an isolated conducting spherical capacitor is given by,

Capacitance calculation formula, C=4πε₀R₁, highlighting electrostatic process.

A cylindrical capacitor consists of two concentric conducting cylinders of length l and radii R1 (inner cylinder) and R2 (outer cylinder). The cylinders are given equal and opposite charges of +Q and -Q, respectively. Consider the calculation of the capacitance of a cylindrical capacitor of length 5 cm and radii 2 mm and 4 mm.

The known quantities are the capacitor’s length and inner and outer radii. The unknown quantity capacitance can be calculated using the known values.

The capacitance of a cylindrical capacitor is given by,

Capacitance formula C=(2πε₀l)/ln(R₂/R₁); Equation for cylindrical capacitor analysis.

When the known values are substituted into the above equation, the calculated capacitance value is 4.02 pF.

Etiketler

Spherical CapacitorCylindrical CapacitorConcentric ShellsElectric FieldGauss s LawElectric PotentialCapacitanceChargePotential DifferenceConducting CylindersCapacitance Calculation4 02 PF

Bölümden 25:

article

Now Playing

25.2 : Spherical and Cylindrical Capacitor

Kapasitans

5.5K Görüntüleme Sayısı

article

25.1 : Kondansatörler ve Kapasitans

Kapasitans

7.5K Görüntüleme Sayısı

article

25.3 : Seri ve Paralel Kondansatörler

Kapasitans

4.0K Görüntüleme Sayısı

article

25.4 : Eşdeğer Kapasite

Kapasitans

1.4K Görüntüleme Sayısı

article

25.5 : Bir Kondansatörde Depolanan Enerji

Kapasitans

3.6K Görüntüleme Sayısı

article

25.6 : Kondansatörde Depolanan Enerji: Problem Çözme

Kapasitans

1.0K Görüntüleme Sayısı

article

25.7 : Dielektrik ile Kondansatör

Kapasitans

3.9K Görüntüleme Sayısı

article

25.8 : Bir kondansatörde dielektrik polarizasyon

Kapasitans

4.6K Görüntüleme Sayısı

article

25.9 : Dielektriklerde Gauss Yasası

Kapasitans

4.2K Görüntüleme Sayısı

article

25.10 : Polarize bir nesneden kaynaklanan potansiyel

Kapasitans

359 Görüntüleme Sayısı

article

25.11 : Duyarlılık, Geçirgenlik ve Dielektrik Sabiti

Kapasitans

1.4K Görüntüleme Sayısı

article

25.12 : Dielektriklerde Elektrostatik Sınır Koşulları

Kapasitans

1.1K Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır