JoVE Logo

Anmelden

25.2 : Spherical and Cylindrical Capacitor

A spherical capacitor consists of two concentric conducting spherical shells of radii R1 (inner shell) and R2 (outer shell). The shells have  equal and opposite charges of +Q and −Q, respectively. For an isolated conducting spherical capacitor, the radius of the outer shell can be considered to be infinite.

Conventionally, considering the  symmetry, the electric field between the concentric shells of a spherical capacitor is directed radially outward. The magnitude of the field, calculated by applying Gauss’s law over a spherical Gaussian surface of radius r concentric with the shells, is given by,

Gauss's law equation diagram showing electric flux, integral form, electrostatics concept.

Substitution of the electric field into the electric field-capacitance relation gives the electric potential as,

Electric potential equation \( V = \frac{Q}{4\pi\varepsilon_0} \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \).

However, since the radius of the second sphere is infinite, the potential is given by,

Electrostatics equation, Coulomb's law, V=Q/(4πε₀(1/R₁)), physics formula.

Since, the ratio of charge to potential difference is the capacitance, the capacitance of an isolated conducting spherical capacitor is given by,

Capacitance calculation formula, C=4πε₀R₁, highlighting electrostatic process.

A cylindrical capacitor consists of two concentric conducting cylinders of length l and radii R1 (inner cylinder) and R2 (outer cylinder). The cylinders are given equal and opposite charges of +Q and -Q, respectively. Consider the calculation of the capacitance of a cylindrical capacitor of length 5 cm and radii 2 mm and 4 mm.

The known quantities are the capacitor’s length and inner and outer radii. The unknown quantity capacitance can be calculated using the known values.

The capacitance of a cylindrical capacitor is given by,

Capacitance formula C=(2πε₀l)/ln(R₂/R₁); Equation for cylindrical capacitor analysis.

When the known values are substituted into the above equation, the calculated capacitance value is 4.02 pF.

Tags

Spherical CapacitorCylindrical CapacitorConcentric ShellsElectric FieldGauss s LawElectric PotentialCapacitanceChargePotential DifferenceConducting CylindersCapacitance Calculation4 02 PF

Aus Kapitel 25:

article

Now Playing

25.2 : Spherical and Cylindrical Capacitor

Capacitance

5.5K Ansichten

article

25.1 : Kondensatoren und Kapazität

Capacitance

7.5K Ansichten

article

25.3 : Kondensatoren in Reihe und parallel

Capacitance

4.0K Ansichten

article

25.4 : Äquivalente Kapazität

Capacitance

1.4K Ansichten

article

25.5 : In einem Kondensator gespeicherte Energie

Capacitance

3.6K Ansichten

article

25.6 : In einem Kondensator gespeicherte Energie: Problemlösung

Capacitance

1.0K Ansichten

article

25.7 : Kondensator mit einem Dielektrikum

Capacitance

3.9K Ansichten

article

25.8 : Dielektrische Polarisation in einem Kondensator

Capacitance

4.6K Ansichten

article

25.9 : Gaußsches Gesetz in Dielektrika

Capacitance

4.3K Ansichten

article

25.10 : Potenzial aufgrund eines polarisierten Objekts

Capacitance

366 Ansichten

article

25.11 : Suszeptibilität, Permittivität und Dielektrizitätskonstante

Capacitance

1.4K Ansichten

article

25.12 : Elektrostatische Randbedingungen in Dielektrika

Capacitance

1.1K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten