JoVE Logo

Oturum Aç

21.7 : Amplifying Signals via Second Messengers

Many receptor binding ligands are hydrophilic; they do not cross the cell membrane but bind to cell-surface receptors. Thus, their message must be relayed by second messengers present in the cell cytoplasm. There are several second messenger pathways, each with its own way of relaying information. For example, the G protein-coupled receptors can activate both phosphoinositol and cyclic AMP (cAMP) second messenger pathways. The phosphoinositol pathway is active when the receptor induces phospholipase C to hydrolyze the phospholipid, phosphatidylinositol biphosphate (PIP2), into two second messengers: diacylglycerol (DAG) and inositol triphosphate (IP3). DAG remains near the cell membrane and activates protein kinase C (PKC). IP3 translocates to the endoplasmic reticulum (ER) and becomes the opening ligand for calcium ion channels on the ER membrane, releasing calcium into the cytoplasm.

In the cAMP pathway, the activated receptor induces adenylate cyclase to produce multiple copies of cAMP from nearby adenosine triphosphate (ATP) molecules. cAMP can stimulate protein kinase A (PKA), open calcium ion channels, and activate the enzyme– Exchange-protein activated by cAMP (Epac).

Cyclic guanosine monophosphate (cGMP) is similar to cAMP. cGMP is synthesized from guanosine triphosphate (GTP) molecules when guanylyl cyclase is activated. As a second messenger, cGMP induces protein kinase G (PKG), which has many overlapping functions with PKA. However, PKG expression is restricted to vascular tissues, lungs, and the brain.

Phosphatidylinositol triphosphate (PIP3) is a second messenger derived from the phosphorylation of PIP2. This event is triggered when growth factors bind the receptor tyrosine kinase. PIP3 recruits Akt (aka. protein kinase B) to the membrane. This kinase is intimately involved in regulating cell survival pathways– including proliferation, apoptosis, and migration.

Etiketler

Second MessengersReceptor Binding LigandsG Protein coupled ReceptorsPhosphoinositol PathwayCyclic AMP cAMPDiacylglycerol DAGInositol Triphosphate IP3Protein Kinase C PKCAdenylate CyclaseProtein Kinase A PKACyclic Guanosine Monophosphate cGMPGuanylyl CyclaseProtein Kinase G PKGPhosphatidylinositol Triphosphate PIP3Receptor Tyrosine KinaseAkt protein Kinase B

Bölümden 21:

article

Now Playing

21.7 : Amplifying Signals via Second Messengers

Hücre Sinyalleşmesinin Prensibi

6.6K Görüntüleme Sayısı

article

21.1 : Hücre Sinyalizasyonuna Genel Bakış

Hücre Sinyalleşmesinin Prensibi

19.8K Görüntüleme Sayısı

article

21.2 : Sinyal Molekülü Türleri

Hücre Sinyalleşmesinin Prensibi

10.0K Görüntüleme Sayısı

article

21.3 : Reseptör Türleri: Hücre Yüzeyi Reseptörleri

Hücre Sinyalleşmesinin Prensibi

16.5K Görüntüleme Sayısı

article

21.4 : Reseptör Çeşitleri: İç Reseptörler

Hücre Sinyalleşmesinin Prensibi

20.1K Görüntüleme Sayısı

article

21.5 : Sinyalizasyon komplekslerinin montajı

Hücre Sinyalleşmesinin Prensibi

5.6K Görüntüleme Sayısı

article

21.6 : Sinyal Yolları Arasındaki Etkileşimler

Hücre Sinyalleşmesinin Prensibi

6.2K Görüntüleme Sayısı

article

21.8 : Enzimatik kaskad ile sinyallerin yükseltilmesi

Hücre Sinyalleşmesinin Prensibi

8.2K Görüntüleme Sayısı

article

21.9 : Hücre Sinyalizasyon Tepkilerinde Çeşitlilik

Hücre Sinyalleşmesinin Prensibi

6.3K Görüntüleme Sayısı

article

21.10 : Hücre Sinyalizasyon Geri Besleme Döngüleri

Hücre Sinyalleşmesinin Prensibi

6.2K Görüntüleme Sayısı

article

21.11 : Bitkilerde Hücre Sinyalizasyonu

Hücre Sinyalleşmesinin Prensibi

5.4K Görüntüleme Sayısı

article

21.12 : Bitki Hormonları

Hücre Sinyalleşmesinin Prensibi

4.9K Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır