JoVE Logo

Oturum Aç

2.4 : Polar and Cylindrical Coordinates

The Cartesian coordinate system is a very convenient tool to use when describing the displacements and velocities of objects and the forces acting on them. However, it becomes cumbersome when we need to describe the rotation of objects. So, when describing rotation, the polar coordinate system is generally used.

2D static equilibrium diagram with vectors, coordinates, angles, illustrating force balance.

In the polar coordinate system, as shown in the above figure, the location of a point in a plane is given by two polar coordinates. The first polar coordinate is the radial coordinate, which is the distance to the point from the origin. The second polar coordinate is the angle that the radial vector makes with some chosen direction, usually the positive x-direction. In polar coordinates, angles are measured in radians, or rads.

The radial vector is attached at the origin and points away from the origin to the point. This radial direction is described by a unit radial vector, which can be written as the magnitude times the unit vector in that direction. The second unit vector is a vector orthogonal to the radial vector. The positive direction between the unit vectors indicates how the polar angle changes in the counterclockwise direction.

The transformation equation relates the polar and cartesian coordinates.

Polar coordinates formula x = r cos(φ), mathematical equation, trigonometry concept.

Polar coordinates equation, y = r sin(φ), illustrating mathematical trigonometric relationships.

Cylindrical-coordinate systems are preferred over Cartesian or polar coordinates for systems with cylindrical symmetry. For example, to describe the surface of a cylinder, Cartesian coordinates require all three coordinates. On the other hand, the cylindrical coordinate system requires only one parameter—the cylinder's radius. As a result, the complicated mathematical calculations become simple.

3D vector diagram, spherical coordinates with vector A, components on x, y, z, and origin O.

Cylindrical coordinates belong to the family of curvilinear coordinates. These are an extension of polar coordinates and describe a vector's position in three-dimensional space, as shown in the above figure. A vector in a cylindrical coordinate system is defined using the radial, polar, and z coordinate scalar components. The radial component is the same as the one used in the polar coordinates. It is the distance from the origin to point Q. Here, Q is the projection of point P in the xy plane. The azimuthal angle is again similar to the one used in polar coordinates and represents the angle between the x-axis and the line segment drawn from the origin to point Q. The third cylindrical coordinate, z, is the same as the z cartesian coordinate and denotes the distance of point P to the xy plane.

The transformation equations convert a vector in cylindrical coordinates to Cartesian coordinates.

x = s cos ϕ equation, trigonometry formula, diagram, educational math concept.

y = s sin φ equation, mathematical formula, trigonometry, static equilibrium analysis

Z-transform equation, formula representation; mathematical analysis, signal processing concept.

Etiketler

Polar CoordinatesCylindrical CoordinatesCartesian CoordinatesRadial CoordinatePolar AngleAzimuthal AngleUnit Radial VectorUnit VectorCoordinate TransformationCylindrical SymmetryCurvilinear Coordinates

Bölümden 2:

article

Now Playing

2.4 : Polar and Cylindrical Coordinates

Vektörler ve Skalerler

14.3K Görüntüleme Sayısı

article

2.1 : Skalerlere Giriş

Vektörler ve Skalerler

14.0K Görüntüleme Sayısı

article

2.2 : Vektörlere Giriş

Vektörler ve Skalerler

13.7K Görüntüleme Sayısı

article

2.3 : Kartezyen Koordinat Sisteminde Vektör Bileşenleri

Vektörler ve Skalerler

18.9K Görüntüleme Sayısı

article

2.5 : Küresel Koordinatlar

Vektörler ve Skalerler

9.9K Görüntüleme Sayısı

article

2.6 : Vektör Cebiri: Grafiksel Yöntem

Vektörler ve Skalerler

11.8K Görüntüleme Sayısı

article

2.7 : Vektör Cebiri: Bileşenler Yöntemi

Vektörler ve Skalerler

13.6K Görüntüleme Sayısı

article

2.8 : Skaler çarpım (nokta çarpım)

Vektörler ve Skalerler

8.1K Görüntüleme Sayısı

article

2.9 : Vektörel Ürün (Çapraz Ürün)

Vektörler ve Skalerler

9.3K Görüntüleme Sayısı

article

2.10 : Skaler ve Vektör Üçlü Çarpımlar

Vektörler ve Skalerler

2.3K Görüntüleme Sayısı

article

2.11 : Gradyan ve Del Operatörü

Vektörler ve Skalerler

2.5K Görüntüleme Sayısı

article

2.12 : Ayrışma ve Kıvrılma

Vektörler ve Skalerler

1.6K Görüntüleme Sayısı

article

2.13 : İkinci Türevler ve Laplace Operatörü

Vektörler ve Skalerler

1.2K Görüntüleme Sayısı

article

2.14 : Çizgi, Yüzey ve Hacim İntegralleri

Vektörler ve Skalerler

2.2K Görüntüleme Sayısı

article

2.15 : Diverjans ve Stokes Teoremleri

Vektörler ve Skalerler

1.5K Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır