JoVE Logo

Войдите в систему

5.9 : Types of Responses of Series RLC Circuits

A second-order differential equation characterizes a source-free series RLC circuit, marking its distinct mathematical representation. The complete solution of this equation is a blend of two unique solutions, each linked to the circuit's roots expressed in terms of the damping factor and resonant frequency.

Equation1

When the damping factor surpasses the resonant frequency, both roots are real and negative, leading to an overdamped response. In this scenario, the circuit's reaction gradually decays over time.

When the damping factor matches the resonant frequency, the second-order differential equation simplifies to a first-order equation with an exponential solution. The natural response follows a pattern of peaking at its time constant and then decaying to zero, signifying critical damping.

Equation2

For situations where the damping factor is less than the resonant frequency, complex roots emerge, characterized by the damped natural frequency. Euler's formula simplifies the complete response to sine and cosine functions, resulting in an underdamped and oscillatory natural response with a time period proportional to the damped natural frequency.

Equation3

These different response behaviors illustrate the significance of source-free RLC circuits in circuit analysis, offering intriguing insights into electrical circuit behavior and applications.

Теги

second order differential equationsource free RLC circuitdamping factorresonant frequencyoverdamped responsecritical dampingunderdamped responsedamped natural frequencycircuit behaviormathematical representation

Из главы 5:

article

Now Playing

5.9 : Types of Responses of Series RLC Circuits

First and Second-Order Circuits

747 Просмотры

article

5.1 : Цепи первого порядка

First and Second-Order Circuits

1.2K Просмотры

article

5.2 : Радиоуправляемая цепь без источника

First and Second-Order Circuits

899 Просмотры

article

5.3 : Радиоуправляемая цепь с источником

First and Second-Order Circuits

848 Просмотры

article

5.4 : Схема RL без источника

First and Second-Order Circuits

811 Просмотры

article

5.5 : RL-схема с источником

First and Second-Order Circuits

659 Просмотры

article

5.6 : Пример дизайна: реакция мышц лягушки

First and Second-Order Circuits

189 Просмотры

article

5.7 : Цепи второго порядка

First and Second-Order Circuits

1.2K Просмотры

article

5.8 : Цепь серии RLC без источника

First and Second-Order Circuits

972 Просмотры

article

5.10 : Серия RLC Circuit с источником

First and Second-Order Circuits

287 Просмотры

article

5.11 : Параллельные RLC-цепи

First and Second-Order Circuits

734 Просмотры

article

5.12 : Схемы операционных усилителей второго порядка

First and Second-Order Circuits

213 Просмотры

article

5.13 : Пример проекта: параллельная RLC-цепь с недостаточным демпфированием

First and Second-Order Circuits

229 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены