JoVE Logo

Войдите в систему

16.18 : Propagation of Action Potentials

The propagation of an action potential refers to the process by which a nerve impulse, or "action potential," travels along a neuron.

Neurons (nerve cells) have a resting membrane potential, with a slightly negative charge inside compared to outside. This is maintained by ion channels, such as sodium (Na+) and potassium (K+) channels, which control the flow of ions. When a stimulus, like a touch or a signal from another neuron, triggers the neuron, sodium channels open, allowing sodium ions to rush into the neuron, causing depolarization.

If the depolarization is strong enough and reaches a certain threshold, it triggers an action potential. The initiation of an action potential occurs at the axon's beginning, or the initial segment, where a high concentration of voltage-gated Na+ channels allows a swift depolarization. As the depolarization advances along the axon, more Na+ channels open, facilitating the spread of the action potential. This is achieved as Na+ ions flow inwards, progressively depolarizing the cell membrane.

However, the Na+ channels become inactivated at peak depolarization, rendering them unopenable for a brief period, known as the absolute refractory period. As a result, any depolarization attempting to reverse direction is null, ensuring that the action potential's propagation is towards the axon terminals, thereby preserving neuronal polarity.

This propagation method applies to unmyelinated axons. In myelinated axons, the process differs. The depolarization spreads optimally due to the absence of constant Na+ channel opening along the axon segment. The precise placement of nodes ensures the membrane remains sufficiently depolarized at the next node.

Propagation in unmyelinated axons, known as continuous conduction, is slower due to the constant influx of Na+. In contrast, myelinated axons exhibit saltatory conduction - a faster method as the action potential leaps node to node, renewing the depolarized membrane. Furthermore, the speed of conduction can be influenced by the axon's diameter, a concept known as resistance.

Теги

action potentialnerve impulseneuronsresting membrane potentialion channelsdepolarizationsodium channelsthresholdvoltage gated channelsrefractory period

Из главы 16:

article

Now Playing

16.18 : Propagation of Action Potentials

The Nervous System and Nervous Tissue

5.0K Просмотры

article

16.1 : Организация нервной системы

The Nervous System and Nervous Tissue

5.4K Просмотры

article

16.2 : Функциональные отделы нервной системы

The Nervous System and Nervous Tissue

4.6K Просмотры

article

16.3 : Функции нервной системы

The Nervous System and Nervous Tissue

3.1K Просмотры

article

16.4 : Нейроны: тело клетки и дендриты

The Nervous System and Nervous Tissue

2.5K Просмотры

article

16.5 : Нейроны: Аксон

The Nervous System and Nervous Tissue

3.1K Просмотры

article

16.6 : Нервная ткань: типы нейронов

The Nervous System and Nervous Tissue

2.2K Просмотры

article

16.7 : Нервная ткань: глиальные клетки

The Nervous System and Nervous Tissue

2.5K Просмотры

article

16.8 : Нервная ткань: миелин

The Nervous System and Nervous Tissue

2.2K Просмотры

article

16.9 : Электрохимический градиент и канальные белки: обзор

The Nervous System and Nervous Tissue

1.9K Просмотры

article

16.10 : Лиганд-зависимые ионные каналы

The Nervous System and Nervous Tissue

1.5K Просмотры

article

16.11 : Потенциал-зависимые ионные каналы

The Nervous System and Nervous Tissue

1.4K Просмотры

article

16.12 : Ионные каналы с механическим стробированием

The Nervous System and Nervous Tissue

686 Просмотры

article

16.13 : Потенциал мембраны покоя

The Nervous System and Nervous Tissue

1.8K Просмотры

article

16.14 : Затухание потенциала покоя

The Nervous System and Nervous Tissue

841 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены