JoVE Logo

Войдите в систему

1.13 : Problem Solving: Dimensional Analysis

Every mathematical equation that connects separate distinct physical quantities must be dimensionally consistent, which implies it must abide by two rules. For this reason, the concept of dimension is crucial. The first rule is that an equation's expressions on either side of an equality must have the exact same dimension, i.e., quantities of the same dimension can be added or removed. The second rule stipulates that all popular mathematical functions, such as exponential, logarithmic, and trigonometric functions, must have dimensionless arguments in an equation.

It is dimensionally inconsistent for an equation to break either of these two rules, so an equation cannot be a representation of any physical law's accurate assertion. Dimensional analysis can help to remember the different laws of physics, check for algebraic errors or typos, and even speculate on the shape that future laws of physics might take.

The base quantities can be used to create any desired physical quantities. A quantity is stated as the product of various powers of the base quantities when it is expressed in terms of the base quantities. The dimension of the quantity in that base is the exponent of a base quantity that appears in the equation.

Consider the physical quantity force, which is defined as mass multiplied by acceleration. Acceleration is calculated as the change of velocity divided by a time interval, while the length divided by the time interval equals velocity. As a result, force has the following dimensions: one in mass, one in length, and minus two in time.

Теги

Dimensional AnalysisPhysical QuantitiesDimensionally ConsistentBase QuantitiesMathematical FunctionsAlgebraic ErrorsLaws Of PhysicsForceMassAccelerationVelocityDimensionless Arguments

Из главы 1:

article

Now Playing

1.13 : Problem Solving: Dimensional Analysis

Units, Dimensions, and Measurements

3.2K Просмотры

article

1.1 : Сфера применения физики

Units, Dimensions, and Measurements

25.7K Просмотры

article

1.2 : Порядки величин

Units, Dimensions, and Measurements

16.7K Просмотры

article

1.3 : Модели, теории и законы

Units, Dimensions, and Measurements

5.1K Просмотры

article

1.4 : Единицы измерения и эталоны

Units, Dimensions, and Measurements

31.0K Просмотры

article

1.5 : Оценка физических величин

Units, Dimensions, and Measurements

4.1K Просмотры

article

1.6 : Базовые величины и производные величины

Units, Dimensions, and Measurements

19.8K Просмотры

article

1.7 : Конвертация единиц измерения

Units, Dimensions, and Measurements

21.9K Просмотры

article

1.8 : Точность и прецизионность

Units, Dimensions, and Measurements

8.6K Просмотры

article

1.9 : Случайные и систематические ошибки

Units, Dimensions, and Measurements

10.7K Просмотры

article

1.10 : Правила для значимых фигур

Units, Dimensions, and Measurements

12.4K Просмотры

article

1.11 : Значимые цифры в расчетах

Units, Dimensions, and Measurements

10.3K Просмотры

article

1.12 : Размерный анализ

Units, Dimensions, and Measurements

14.7K Просмотры

article

1.14 : Решение задач по физике

Units, Dimensions, and Measurements

5.6K Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены