JoVE Logo

Войдите в систему

4.17 : Ion Exchange

Ion exchange chromatography separates charged molecules from a solution by reversibly exchanging them with mobile, or 'active', ions associated with the oppositely charged stationary phase. This method can be used to separate ions, soften and deionize water, and purify solutions. The polymers comprising the ion-exchange column are high-molecular-weight and chemically stable polymers, crosslinked to be porous and essentially insoluble. They are also functionalized with either acidic or basic groups. When functionalized with acidic groups, the columns or resin are known as cation exchangers and contain negatively charged polymers with positive counter ions. These allow cations to be exchanged from the mobile phase. When functionalized with basic groups, the columns or resin are known as anion exchangers, which contain positively charged polymers with negative counter ions and exchange anions from the solution.

During ion exchange, the counterions associated with the solid-phase polymers enter the solution while ions from the solution interact with the polymer in their place. Note that the ability to exchange ions increases as the extent of cross-linking increases and the number of ion-exchange groups increases in the polymer. This exchange is reversible and continues until equilibrium is established.

Acid cation exchangers can be functionalized with either strong acids, such as sulfonic acid (−SO3H), seen in polystyrene sulfonic acid, or weak acids, such as carboxylic acid (−COOH), seen in poly(methyl methylacrylic) acid. Similarly, anion exchangers are classified as either strong or weak. Strong anion exchangers often contain quaternary ammonium groups (−CH2N(CH3)3+), such as those in polystyrene quaternary ammonium chloride, and weak anion exchangers are often functionalized with substituted amines (−NH3+), such as those in polystyrene tertiary amine hydroxide.

Теги

Ion Exchange ChromatographyCharged MoleculesMobile PhaseStationary PhaseCation ExchangersAnion ExchangersFunctionalized PolymersCrosslinked PolymersEquilibrium ExchangeStrong AcidsWeak AcidsSulfonic AcidCarboxylic AcidQuaternary Ammonium GroupsSubstituted Amines

Из главы 4:

article

Now Playing

4.17 : Ion Exchange

Introduction to Separation Methods

546 Просмотры

article

4.1 : States of Matter and Phase Changes

Introduction to Separation Methods

912 Просмотры

article

4.2 : Distillation: Vapor–Liquid Equilibria

Introduction to Separation Methods

2.7K Просмотры

article

4.3 : Filtration

Introduction to Separation Methods

788 Просмотры

article

4.4 : Centrifugation

Introduction to Separation Methods

2.1K Просмотры

article

4.5 : Sublimation

Introduction to Separation Methods

710 Просмотры

article

4.6 : Recrystallization: Solid–Solution Equilibria

Introduction to Separation Methods

1.0K Просмотры

article

4.7 : Crystal Growth: Principles of Crystallization

Introduction to Separation Methods

1.6K Просмотры

article

4.8 : Precipitation and Co-precipitation

Introduction to Separation Methods

1.7K Просмотры

article

4.9 : Coagulation

Introduction to Separation Methods

266 Просмотры

article

4.10 : Electrodeposition

Introduction to Separation Methods

597 Просмотры

article

4.11 : Extraction: Partition and Distribution Coefficients

Introduction to Separation Methods

1.9K Просмотры

article

4.12 : Extraction: Effects of pH

Introduction to Separation Methods

434 Просмотры

article

4.13 : Extraction: Advanced Methods

Introduction to Separation Methods

415 Просмотры

article

4.14 : Chromatography: Introduction

Introduction to Separation Methods

3.8K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены