JoVE Logo

Zaloguj się

9.15 : Gravitational Potential Energy for Extended Objects

Consider a system comprising several point masses. The coordinates of the center of mass for this system can be expressed as the summation of the product of each mass and its position vector divided by the total mass:

Center of mass equation; Σmiri/Σmi; vector notation; mathematical expression; physics diagram.

Suppose the point masses are replaced with an extended object with uniformly distributed mass. The coordinates of the center of mass for this object can be obtained by replacing the point mass with the differential mass element and the summation with an integral in the equation for the center of mass:

center of mass equation, \(\vec{r}_{cm} = \frac{1}{M} \int \vec{r} \, dm\), theoretical physics formula

Consider a ring with uniform mass distribution M and radius R. The circular symmetry ensures that the center of mass is located at the ring's geometric center:

Circular loop in 3D, physics diagram, showing differential mass element dm and angle θ for equations.

Consider a coordinate system with its origin located at the center of the ring. Since the ring has a uniform mass distribution, the linear mass density is constant. So, the differential mass element on the surface of the ring is the product of the linear mass density and the differential length element on the ring's surface.

Now, using the expression for the center of mass and substituting the value of the position vector in the component form and the differential mass element gives the following equation:

Center of mass vector equation; integral of position vector components diagram.

As the arc length ds subtends a differential angle , the arc length equals the radius multiplied by the differential angle. The linear mass density is the total mass divided by the length of the ring. Incorporating these values of arc length and linear mass density, the center of mass expression reduces to the following:

Centroid formula, vector calculus equation, integral for center of mass in polar coordinates.

The variable of integration is the angle θ. So, the limits of integration around the ring are θ = 0 to θ = 2π. The integral is separated into the x and y components and integrated across the limits:

static equilibrium equation, vector sum equals zero, physics formula representation

Since the origin of the coordinate is located at the center of the ring, the center of mass of the ring lies at its geometric center.

Tagi

Gravitational Potential EnergyCenter Of MassExtended ObjectsPoint MassesUniform Mass DistributionRing Mass DistributionLinear Mass DensityDifferential Mass ElementArc LengthIntegration LimitsGeometric CenterCircular SymmetryCoordinate System

Z rozdziału 9:

article

Now Playing

9.15 : Gravitational Potential Energy for Extended Objects

Linear Momentum, Impulse and Collisions

1.3K Wyświetleń

article

9.1 : Pęd liniowy

Linear Momentum, Impulse and Collisions

13.7K Wyświetleń

article

9.2 : Siła i pęd

Linear Momentum, Impulse and Collisions

15.2K Wyświetleń

article

9.3 : Impuls

Linear Momentum, Impulse and Collisions

18.3K Wyświetleń

article

9.4 : Twierdzenie o impulsie i pędzie

Linear Momentum, Impulse and Collisions

11.1K Wyświetleń

article

9.5 : Zasada zachowania pędu: Wprowadzenie

Linear Momentum, Impulse and Collisions

14.4K Wyświetleń

article

9.6 : Zasada zachowania pędu: rozwiązywanie problemów

Linear Momentum, Impulse and Collisions

9.8K Wyświetleń

article

9.7 : Rodzaje kolizji - I

Linear Momentum, Impulse and Collisions

6.6K Wyświetleń

article

9.8 : Rodzaje kolizji - II

Linear Momentum, Impulse and Collisions

7.1K Wyświetleń

article

9.9 : Zderzenia sprężyste: Wprowadzenie

Linear Momentum, Impulse and Collisions

12.1K Wyświetleń

article

9.10 : Zderzenia sprężyste: studium przypadku

Linear Momentum, Impulse and Collisions

13.3K Wyświetleń

article

9.11 : Kolizje w wielu wymiarach: Wprowadzenie

Linear Momentum, Impulse and Collisions

4.7K Wyświetleń

article

9.12 : Kolizje w wielu wymiarach: rozwiązywanie problemów

Linear Momentum, Impulse and Collisions

3.5K Wyświetleń

article

9.13 : Środek masy: Wprowadzenie

Linear Momentum, Impulse and Collisions

14.0K Wyświetleń

article

9.14 : Znaczenie środka masy

Linear Momentum, Impulse and Collisions

6.2K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone