JoVE Logo

サインイン

17.4 : Control Volume and System Representations

Two key frameworks are employed to analyze mass, energy, and momentum transfer: the control volume approach and the system approach. These frameworks offer different perspectives, depending on whether the focus is on a specific region in space (control volume approach) or a defined mass of fluid (system approach).

The control volume approach considers a stationary region in space through which fluid flows. This region is bounded by a control surface. For instance, in the case of water flowing through a pipe, the control volume would be a fixed section of the pipe, and the control surface would be the boundary of this section. This framework simplifies the analysis of fluid flow by applying conservation laws for mass, energy, and momentum across the control volume. The key advantage is that it focuses on the macroscopic properties of the fluid without requiring tracking of individual fluid particles. As water enters and exits the control volume, the changes in its flow characteristics are assessed at the boundaries of the control surface, making it a powerful tool for studying steady or unsteady flow conditions.

The system approach, by contrast, is concerned with a fixed mass of fluid that is tracked over time. A practical example of this is water in a tank. The water inside the tank represents a system, and as it drains or fills, the same mass of water is analyzed. The system's behavior is studied as external forces and energy transfers cause changes in the fluid's state. This approach is particularly useful when analyzing thermodynamic processes where the exact mass and its energy or momentum content are critical, such as in closed-system heat transfer or phase change scenarios.

While the control volume is fixed in space and focuses on the exchange of quantities through its surface, the system approach tracks the evolution of a specific mass of fluid. These methodologies are complementary, offering flexibility in fluid dynamics and thermodynamic analysis.

タグ

Control Volume ApproachSystem ApproachMass TransferEnergy TransferMomentum TransferFluid FlowConservation LawsControl SurfaceMacroscopic PropertiesSteady FlowUnsteady FlowThermodynamic ProcessesClosed system Heat TransferPhase Change Scenarios

章から 17:

article

Now Playing

17.4 : Control Volume and System Representations

Fluid Kinematics

768 閲覧数

article

17.1 : Eulerian and Lagrangian Flow Descriptions

Fluid Kinematics

937 閲覧数

article

17.2 : Introduction to Types of Flows

Fluid Kinematics

765 閲覧数

article

17.3 : Streamlines, Streaklines, and Pathlines

Fluid Kinematics

839 閲覧数

article

17.5 : Velocity and Acceleration in Steady and Unsteady Flow

Fluid Kinematics

66 閲覧数

article

17.6 : Reynolds Transport Theorem

Fluid Kinematics

743 閲覧数

article

17.7 : Design Example: Flow Through a Fire Extinguisher

Fluid Kinematics

109 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved