JoVE Logo

サインイン

2.10 : Direction Cosines of a Vector

Direction cosines, which help describe the orientation of a vector with respect to the coordinate axes, are an essential concept in the field of vector calculus. Consider vector A that is expressed in terms of the Cartesian vector form using i, j, and k unit vectors. The magnitude of vector A is defined as the square root of the sum of the squares of its components. The direction of this vector with respect to the x, y, and z axes is defined by the coordinate direction angles α, β, and γ, respectively. These angles can be determined by projecting vector A onto the respective axes, known as the direction cosines of vector A.

Static equilibrium; formula: cos α = Ax/A; mathematical equation for vector component analysis.

cosine law equation; trigonometry formula; mathematical expression

Trigonometry equation cos γ = Az/A for vector component analysis in educational diagram.

A significant relationship can be formulated by squaring the equation that defines the direction cosines of A. This relationship is given by the sum of the squares of the direction cosines, which equals one.

Static equilibrium equation, cos²α + cos²β + cos²γ = 1, formula for spatial geometry concepts.

Using this equation, if only two of the coordinate angles are known, the third angle can be found. Direction cosines help describe the orientation of a vector based on its components in space, making them an important concept in a wide range of fields, including physics, engineering, and computer graphics. By understanding the direction cosines of a vector, one can easily determine its orientation and displacement, which, thus, enables the development of accurate models and simulations.

タグ

Direction CosinesVector OrientationVector CalculusCartesian VectorUnit VectorsMagnitude Of VectorCoordinate Direction AnglesProjectionRelationship Of Direction CosinesPhysicsEngineeringComputer GraphicsAccurate ModelsSimulations

章から 2:

article

Now Playing

2.10 : Direction Cosines of a Vector

力のベクトル

472 閲覧数

article

2.1 : スカラーとベクトル

力のベクトル

1.2K 閲覧数

article

2.2 : ベクトル演算

力のベクトル

1.2K 閲覧数

article

2.3 : 力の紹介

力のベクトル

505 閲覧数

article

2.4 : 力の分類

力のベクトル

1.1K 閲覧数

article

2.5 : 力のベクトル加算

力のベクトル

963 閲覧数

article

2.6 : 2次元力システム

力のベクトル

876 閲覧数

article

2.7 : 2次元力システム:問題解決

力のベクトル

543 閲覧数

article

2.8 : スカラー表記

力のベクトル

656 閲覧数

article

2.9 : デカルトベクトル表記

力のベクトル

736 閲覧数

article

2.11 : 3次元力システム

力のベクトル

2.0K 閲覧数

article

2.12 : 3次元力システム:問題解決

力のベクトル

635 閲覧数

article

2.13 : 位置ベクトル

力のベクトル

820 閲覧数

article

2.14 : 線に沿ってベクトルを強制する

力のベクトル

474 閲覧数

article

2.15 : ドット積

力のベクトル

295 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved