JoVE Logo

サインイン

The process of hypothesis testing based on the P-value method includes calculating the P- value using the sample data and interpreting it.

First, a specific claim about the population parameter is proposed. The claim is based on the research question and is stated in a simple form. Further, an opposing statement to the claim is also stated. These statements can act as null and alternative hypotheses: a null hypothesis would be a neutral statement while the alternative hypothesis can have a direction. The alternative hypothesis can also be the original claim if it involves a specific direction about the population parameter.

Once the hypotheses are stated, they are expressed symbolically. As a convention, the null hypothesis would contain the equality symbol, while the alternative hypothesis may contain >, <, or ≠ symbols.

Before going further in the hypothesis testing, an appropriate significance level must be decided. There is a general consensus to set significance levels at 95% (i.e., 0.95) or 99% (i.e., 0.99) level. Here the α would be 0.05 or 0.01, respectively.

Next, identify an appropriate test statistic. The proportion and the mean (when population standard deviation is known) is the z statistic. For the mean, when the population standard deviation is unknown, it is a t statistic, and for the variance (or SD), it is a chi-square statistic.

After calculating the test statistic, find the P-value electronically or from the respective P-value table, and compare it with the pre-decided significance level. If the P-value is less than the pre-decided significance level, reject the null hypothesis.

The interpretation of the original claim from the hypothesis or the property of the population must be based on the P-value.

タグ

P value MethodHypothesis TestingNull HypothesisAlternative HypothesisSignificance LevelTest StatisticZ StatisticT StatisticChi square StatisticSample DataPopulation ParameterStatistical Interpretation

章から 9:

article

Now Playing

9.6 : Decision Making: P-value Method

仮説検証

5.2K 閲覧数

article

9.1 : 仮説とは?

仮説検証

9.8K 閲覧数

article

9.2 : 帰無仮説と対立仮説

仮説検証

7.8K 閲覧数

article

9.3 : 臨界領域、棄却限界値、有意水準

仮説検証

11.6K 閲覧数

article

9.4 : P値

仮説検証

6.6K 閲覧数

article

9.5 : 仮説検定の種類

仮説検証

25.7K 閲覧数

article

9.7 : 意思決定:従来の方法

仮説検証

3.9K 閲覧数

article

9.8 : 仮説:受け入れるか拒否しないか?

仮説検証

27.3K 閲覧数

article

9.9 : 仮説検定のエラー

仮説検証

4.1K 閲覧数

article

9.10 : 人口比率に関する主張の検定

仮説検証

3.2K 閲覧数

article

9.11 : 平均に関するクレームのテスト: 既知の母集団 SD

仮説検証

2.7K 閲覧数

article

9.12 : 平均値に関するクレームのテスト: 母集団 SD 不明

仮説検証

3.4K 閲覧数

article

9.13 : 標準偏差に関する主張の検定

仮説検証

2.4K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved