JoVE Logo

サインイン

We previously discussed angular velocity for uniform circular motion, however not all motion is uniform. Envision an ice skater spinning with their arms outstretched; when they pull their arms inward, their angular velocity increases. Additionally, think about a computer's hard disk slowing to a halt as the angular velocity decreases. The faster the change in angular velocity, the greater the angular acceleration. The instantaneous angular acceleration is defined as the derivative of angular velocity with respect to time. The units of angular acceleration are (rad/s)/s, or radians per second squared.

We can relate the tangential acceleration of a point on a rotating body at a distance from the axis of rotation in the same way that we relate the tangential speed to the angular velocity. Thus, tangential acceleration is the radius times the angular acceleration.

The following points represent a problem-solving strategy that can be applied to rotational kinematics:

  1. Examine the situation to determine that rotational kinematics (rotational motion) is involved.
  2. Identify exactly what needs to be determined in the problem (identify the unknowns). A sketch of the situation is useful.
  3. Make a complete list of what is given or can be inferred from the problem as stated (identify the knowns).
  4. Solve the appropriate equation or equations for the quantity to be determined (the unknown). It can be useful to think in terms of a translational analog. Substitute the known values along with their units into the appropriate equation and obtain numerical solutions complete with units. Be sure to use units of radians for angles.
  5. Finally, check the answer to see if it is reasonable.

This text is adapted from Openstax, University Physics Volume 1, Section 10.1: Rotational Variables.

タグ

Angular VelocityAngular AccelerationTangential AccelerationRotational KinematicsRadians Per Second SquaredProblem solving StrategyTranslational Analog

章から 10:

article

Now Playing

10.2 : Angular Velocity and Acceleration

回転と剛体

8.7K 閲覧数

article

10.1 : 角速度と変位

回転と剛体

14.1K 閲覧数

article

10.3 : 一定の角加速度による回転 - I

回転と剛体

6.6K 閲覧数

article

10.4 : 一定の角加速度による回転 - II

回転と剛体

5.8K 閲覧数

article

10.5 : 角度量と線形量の関連付け - I

回転と剛体

6.4K 閲覧数

article

10.6 : 角度と線形の量の関連付け - II

回転と剛体

5.3K 閲覧数

article

10.7 : 慣性モーメント

回転と剛体

11.2K 閲覧数

article

10.8 : 慣性モーメントと回転運動エネルギー

回転と剛体

7.1K 閲覧数

article

10.9 : 慣性モーメント:計算

回転と剛体

6.6K 閲覧数

article

10.10 : 複合オブジェクトの慣性モーメント

回転と剛体

6.0K 閲覧数

article

10.11 : 平行軸定理

回転と剛体

6.3K 閲覧数

article

10.12 : 垂直軸定理

回転と剛体

2.6K 閲覧数

article

10.13 : 回転座標系におけるベクトル変換

回転と剛体

1.4K 閲覧数

article

10.14 : コリオリ力

回転と剛体

2.9K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved