JoVE Logo

Accedi

11.3 : Ethers from Alcohols: Alcohol Dehydration and Williamson Ether Synthesis

Overview

Ethers can be prepared from organic compounds by various methods. Some of them are discussed below,

Preparation of Ethers by Alcohol Dehydration

In this method, in the presence of protic acids, alcohol dehydrates to produce alkenes and ethers under different conditions. For example, in the presence of sulphuric acid, dehydration of ethanol at 413 K yields ethoxyethane, whereas it yields ethene at 443 K.

Figure1

This method is a nucleophilic substitution reaction. The two alcohol molecules involved in the reaction play two roles—one alcohol molecule acts as a substrate while the other acts as a nucleophile. The reaction follows an SN2 mechanism. The dehydration of secondary and tertiary alcohols to get corresponding ethers is unsuccessful as alkenes are formed easily in these reactions.

Preparation of Ethers by Williamson Ether Synthesis

It is the most versatile method for the preparation of asymmetrical ethers in laboratories. In this method, initially, the alcohol is deprotonated to form an alkoxide ion. Further, the alkoxide ion functions as a nucleophile and attacks an alkyl halide, leading to the formation of ether. The reaction generally follows the SN2 mechanism for primary alcohol.

Figure2

Williamson synthesis exhibits higher productivity when the halide to be displaced is on a methyl or a primary carbon. In the case of secondary alkyl halides, elimination competes with substitution, whereas the formation of elimination products is the only case in tertiary alkyl halides.

Tags

EthersAlcoholsAlcohol DehydrationWilliamson Ether SynthesisProtic AcidsSulphuric AcidEthoxyethaneEtheneNucleophilic Substitution ReactionSN2 MechanismSecondary AlcoholsTertiary AlcoholsAlkenesAlkoxide IonAlkyl HalideAsymmetrical EthersLaboratoriesDeprotonatedHigher Productivity

Dal capitolo 11:

article

Now Playing

11.3 : Ethers from Alcohols: Alcohol Dehydration and Williamson Ether Synthesis

Eteri, epossidi e solfuri

10.1K Visualizzazioni

article

11.1 : Struttura e nomenclatura degli eteri

Eteri, epossidi e solfuri

10.9K Visualizzazioni

article

11.2 : Proprietà fisiche degli eteri

Eteri, epossidi e solfuri

6.8K Visualizzazioni

article

11.4 : Eteri da alcheni: addizione alcolica e alcossimercurazione-demercurazione

Eteri, epossidi e solfuri

7.7K Visualizzazioni

article

11.5 : Da eteri ad alogenuri alchilici: scissione acido-catalizzata

Eteri, epossidi e solfuri

5.5K Visualizzazioni

article

11.6 : Autossidazione di eteri a perossidi e idroperossidi

Eteri, epossidi e solfuri

7.3K Visualizzazioni

article

11.7 : Gli eteri corona

Eteri, epossidi e solfuri

5.1K Visualizzazioni

article

11.8 : Struttura e nomenclatura degli epossidi

Eteri, epossidi e solfuri

6.3K Visualizzazioni

article

11.9 : Preparazione degli epossidi

Eteri, epossidi e solfuri

7.3K Visualizzazioni

article

11.10 : Epossidazione di Sharpless

Eteri, epossidi e solfuri

3.7K Visualizzazioni

article

11.11 : Apertura dell'anello degli epossidi acido-catalizzata

Eteri, epossidi e solfuri

7.0K Visualizzazioni

article

11.12 : Apertura dell'anello degli epossidi base-catalizzata

Eteri, epossidi e solfuri

8.2K Visualizzazioni

article

11.13 : Struttura e nomenclatura di tioli e solfuri

Eteri, epossidi e solfuri

4.5K Visualizzazioni

article

11.14 : Preparazione e reazioni dei tioli

Eteri, epossidi e solfuri

5.9K Visualizzazioni

article

11.15 : Preparazione e reazioni dei solfuri

Eteri, epossidi e solfuri

4.7K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati