JoVE Logo

Iniciar sesión

7.8 : Relation Between the Distributed Load and Shear

Understanding the relationship between the distributed load and shear force in structural analysis is crucial for analyzing beams subjected to various loading conditions. Consider the case of a beam experiencing a distributed load, two concentrated loads, and a couple moment.

Static equilibrium diagram with forces F1, F2; equations ΔF=w(x)Δx, Δk=k(Δx); spring load setup.

The connection between the shear force and the distributed load for the given case can be established following the given procedure. First, consider an elemental section on the beam free from any concentrated load or couple moment. We can draw a free-body diagram to analyze the forces acting on this section. The diagram will consist of the distributed load acting along the length of the beam, the shear force V(x) acting on the right-hand side of the section, and an incremental shear force dV added to maintain the equilibrium.

To maintain equilibrium in the vertical direction, the shear force acting on the right-hand side of the section should be incremented by a small and finite amount, ΔV. The resultant force of the distributed load, w(xx, acts at a fractional distance from the right end of the section.

Using the equation of equilibrium for vertical force, the following relation between shear and load can be obtained:

Change in potential energy formula, ΔV=-w(x)Δx, static equilibrium, concept diagram.

Next, we will divide both sides of the equation by Δx and let Δx approach zero:

Static equilibrium equation \( \frac{dV}{dx} = -w(x) \), formula for load distribution analysis.

This equation shows that the slope of the shear force is equal to the distributed load intensity.

Finally, we can rearrange the equation and integrate the distributed load over the elemental section between two arbitrary points, Q and R:

Static equilibrium equation: VR-VQ=-∫w(x)dx, integral formula for physics, mathematics.

This integral equation demonstrates the relationship between the change in shear force and the area under the load curve. The difference in shear force between points Q and R equals the area under the distributed load curve between these two points.

Tags

Distributed LoadShear ForceStructural AnalysisBeam Loading ConditionsFree body DiagramEquilibriumIncremental Shear ForceVertical Force EquilibriumShear Force SlopeLoad IntensityIntegral EquationLoad Curve Area

Del capítulo 7:

article

Now Playing

7.8 : Relation Between the Distributed Load and Shear

Internal Forces

604 Vistas

article

7.1 : Convenio de Signos.

Internal Forces

1.9K Vistas

article

7.2 : Fuerza normal y de corte

Internal Forces

2.1K Vistas

article

7.3 : Momentos de flexión y torsión

Internal Forces

3.5K Vistas

article

7.4 : Cargas internas en elementos estructurales: resolución de problemas

Internal Forces

1.2K Vistas

article

7.5 : Viguería

Internal Forces

1.3K Vistas

article

7.6 : Diagrama de cizallamiento

Internal Forces

745 Vistas

article

7.7 : Diagrama de momento de flexión

Internal Forces

999 Vistas

article

7.9 : Relación entre el momento cortante y el momento flector

Internal Forces

981 Vistas

article

7.10 : Diagrama de Momento de Cortamiento y Flexión: Resolución de Problemas

Internal Forces

1.3K Vistas

article

7.11 : Cable sometido a cargas concentradas

Internal Forces

797 Vistas

article

7.12 : Cable sometido a una carga distribuida

Internal Forces

646 Vistas

article

7.13 : Cable sometido a su propio peso

Internal Forces

428 Vistas

article

7.14 : Cable: Resolución de problemas

Internal Forces

315 Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados