JoVE Logo

Anmelden

7.9 : Estimating Population Mean with Known Standard Deviation

To construct a confidence interval for a single unknown population mean μ, where the population standard deviation is known, we need sample mean as an estimate for μ and we need the margin of error. Here, the margin of error (EBM) is called the error bound for a population mean (abbreviated EBM). The sample mean is the point estimate of the unknown population mean μ.

The confidence interval estimate will have the form as follows:

(point estimate - error bound, point estimate + error bound)

The margin of error (EBM) depends on the confidence level (abbreviated CL). The confidence level is often considered the probability that the calculated confidence interval estimate will contain the true population parameter. However, it is more accurate to state that the confidence level is the percent of confidence intervals that contain the true population parameter when repeated samples are taken. Most often, it is the choice of the person constructing the confidence interval to choose a confidence level of 90% or higher because that person wants to be reasonably certain of his or her conclusions.

There is another probability called alpha (α). α is related to the confidence level, CL. α is the probability that the interval does not contain the unknown population parameter.

Mathematically, α + CL = 1.

A confidence interval for a population mean with a known standard deviation is based on the fact that the sample means follow an approximately normal distribution.

Steps to Calculate the Confidence Interval:

To construct a confidence interval estimate for an unknown population mean, we need data from a random sample. The steps to construct and interpret the confidence interval are:

  • Calculate the sample mean from the sample data. (Assumption: the population standard deviation σ is known)
  • Find the z-score that corresponds to the confidence level e.g. 95%.
  • Calculate the error bound EBM.
  • Construct the confidence interval.
  • Write a sentence that interprets the estimate in the context of the situation in the problem.

This text is adapted from Openstax, Introductory Statistics, Section 8.1 A single population mean using the normal distribution.

Tags

Confidence IntervalPopulation MeanStandard DeviationSample MeanMargin Of ErrorError Bound EBMConfidence Level CLAlphaZ scoreNormal DistributionRandom SampleStatistical EstimationHypothesis Testing

Aus Kapitel 7:

article

Now Playing

7.9 : Estimating Population Mean with Known Standard Deviation

Estimates

8.2K Ansichten

article

7.1 : Was sind Schätzungen?

Estimates

4.9K Ansichten

article

7.2 : Stichprobenanteil und Anteil der Grundgesamtheit

Estimates

5.2K Ansichten

article

7.3 : Konfidenzintervalle

Estimates

6.1K Ansichten

article

7.4 : Konfidenzkoeffizient

Estimates

7.5K Ansichten

article

7.5 : Interpretation von Konfidenzintervallen

Estimates

5.6K Ansichten

article

7.6 : Kritische Werte

Estimates

6.7K Ansichten

article

7.7 : Fehlermarge

Estimates

4.0K Ansichten

article

7.8 : Berechnung des Stichprobenumfangs

Estimates

3.2K Ansichten

article

7.10 : Schätzen des Mittelwerts der Grundgesamtheit mit unbekannter Standardabweichung

Estimates

7.6K Ansichten

article

7.11 : Konfidenzintervall für die Schätzung des Mittelwerts der Grundgesamtheit

Estimates

7.2K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten