JoVE Logo

Anmelden

15.27 : Ester zu β-Ketoestern: Mechanismus der Claisen-Kondensation

Regular Claisen condensation involves the synthesis of β-ketoesters by combining identical ester molecules bearing two α hydrogens in the presence of an alkoxide base. The reaction commences with the deprotonation of the acidic α hydrogen by the base to form a resonance stabilized ester enolate. This nucleophilic ion then attacks the carbonyl center of another ester molecule to generate a tetrahedral alkoxide intermediate. Next, the expulsion of the alkoxide group from the intermediate restores the carbonyl center and produces an acyl-substituted ester. The alkoxide by-product subsequently abstracts the second α proton from the β-dicarbonyl compound to form a doubly-stabilized enolate ion. This step is the driving force of the reaction to completion and suggests the essential requirement of two α protons in starting ester. Finally, acidification of the enolate produces the desired β-ketoester. The utility of the Claisen condensation process is also observed in biological systems. For instance, the synthesis of acetoacetyl-CoA from the condensation of acetyl-CoA in the presence of thiolase enzyme.

Tags

Claisen CondensationketoestersEster EnolateNucleophilic AttackTetrahedral IntermediateAlkoxide GroupAcyl substituted EsterDicarbonyl CompoundEnolate IonAcidificationAcetoacetyl CoAThiolase Enzyme

Aus Kapitel 15:

article

Now Playing

15.27 : Ester zu β-Ketoestern: Mechanismus der Claisen-Kondensation

α-Kohlenstoffchemie: Enole, Enolate und Enamine

3.5K Ansichten

article

15.1 : Reaktivität von Enolen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.9K Ansichten

article

15.2 : Reaktivität von Enolat Ionen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.4K Ansichten

article

15.3 : Arten von Enolen und Enolaten

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.5K Ansichten

article

15.4 : Konventionen des Enolat Mechanismus

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.1K Ansichten

article

15.5 : Regioselektive Bildung von Enolaten

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.5K Ansichten

article

15.6 : Stereochemische Effekte der Enolisierung

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.0K Ansichten

article

15.7 : Säurekatalysierte α-Halogenierung von Aldehyden und Ketonen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

3.6K Ansichten

article

15.8 : Basenkatalysierte α-Halogenierung von Aldehyden und Ketonen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

3.4K Ansichten

article

15.9 : Mehrfache Halogenierung von Methylketonen: Haloform-Reaktion

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.0K Ansichten

article

15.10 : α-Halogenierung von Carbonsäurederivaten: Überblick

α-Kohlenstoffchemie: Enole, Enolate und Enamine

3.3K Ansichten

article

15.11 : α-Bromierung von Carbonsäuren: Hell-Volhard-Zelinsky-Reaktion

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.9K Ansichten

article

15.12 : Reaktionen von α-Halocarbonyl-Verbindungen: Nukleophile Substitution

α-Kohlenstoffchemie: Enole, Enolate und Enamine

3.2K Ansichten

article

15.13 : Nitrosierung von Enolen

α-Kohlenstoffchemie: Enole, Enolate und Enamine

2.5K Ansichten

article

15.14 : Bildung von C-C-Bindungen: Überblick über die Aldolkondensation

α-Kohlenstoffchemie: Enole, Enolate und Enamine

13.5K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten