All
Research
Education
科研
教育
Business
解决方案
CN
EN - English
CN - 中文
DE - Deutsch
ES - Español
KR - 한국어
IT - Italiano
FR - Français
PT - Português
TR - Türkçe
JA - 日本語
PL - Polski
RU - Русский
HE - עִברִית
AR - العربية
登录
Chapter 16
A Fourier series is a mathematical technique that breaks down periodic functions into an infinite series of sinusoidal harmonics. The trigonometric ...
In audio signal processing, the exponential Fourier series plays a crucial role in sound synthesis, allowing complex sounds to be broken down into simpler ...
The exploration of the properties of the Fourier series begins with linearity. When considering two periodic signals and forming a third by their linear ...
When a signal undergoes time scaling, the Fourier series coefficients remain the same, but the representation of the Fourier series changes due to an ...
Parseval's theorem states that if a function is periodic, then the average power of the signal over one period equals the sum of the squared ...
The Fourier series of a signal is an infinite sum of complex exponentials. The infinite sum is often truncated to a finite partial sum to make it ...
The Discrete-Time Fourier Series is a counterpart to the Fourier-series expansion of continuous-time periodic signals. Calculating the expansion ...
政策
使用条款
隐私
联系我们
向图书馆推荐
JoVE 新闻简报
JoVE Journal
技术专题合集
JoVE Encyclopedia of Experiments
档案
JoVE Core
JoVE Science Education
JoVE Lab Manual
JoVE Quiz
JoVE Playlist
发表
图书馆员
访问权限
关于 JoVE
JoVE Sitemap
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。