Source: Laboratory of Dr. B. Jill Venton - University of Virginia
Calibration curves are used to understand the instrumental response to an analyte and predict the concentration in an unknown sample. Generally, a set of standard samples are made at various concentrations with a range than includes the unknown of interest and the instrumental response at each concentration is recorded. For more accuracy and to understand the error, the response at each concentration can be repeated so an error bar is obtained. The data are then fit with a function so that unknown concentrations can be predicted. Typically the response is linear, however, a curve can be made with other functions as long as the function is known. The calibration curve can be used to calculate the limit of detection and limit of quantitation.
When making solutions for a calibration curve, each solution can be made separately. However, that can take a lot of starting material and be time consuming. Another method for making many different concentrations of a solution is to use serial dilutions. With serial dilutions, a concentrated sample is diluted down in a stepwise manner to make lower concentrations. The next sample is made from the previous dilution, and the dilution factor is often kept constant. The advantage is that only one initial solution is needed. The disadvantage is that any errors in solution making—pipetting, massing, etc.—get propagated as more solutions are made. Thus, care must be taken when making the initial solution.
Calibration curves can be used to predict the concentration of an unknown sample. To be completely accurate, the standard samples should be run in the same matrix as the unknown sample. A sample matrix is the components of the sample other than the analyte of interest, including the solvent and all salts, proteins, metal ions, etc. that might be present in the sample. In practice, running calibration samples in the same matrix as the unknown is sometimes difficult, as the unknown sample may be from a complex biological or environmental sample. Thus, many calibration curves are made in a sample matrix that closely approximates the real sample, such as artificial cerebral spinal fluid or artificial urine, but may not be exact. The range of concentrations of the calibration curve should bracket that in the expected unknown sample. Ideally a few concentrations above and below the expected concentration sample are measured.
Many calibration curves are linear and can be fit with the basic equation y=mx+b, where m is the slope and b is the y-intercept. However, not all curves are linear and sometimes to get a line, one or both set of axes will be on a logarithmic scale. Linear regression is typically performed using a computer program and the most common method is to use a least squares fitting. With a linear regression analysis, an R2 value, called the coefficient of determination, is given. For a simple single regression, R2 is the square of the correlation coefficient (r) and provides information about how far away the y values are from the predicted line. A perfect line would have an R2 value of 1, and most R2 values for calibration curves are over 0.95. When the calibration curve is linear, the slope is a measure of sensitivity: how much the signal changes for a change in concentration. A steeper line with a larger slope indicates a more sensitive measurement. A calibration curve can also help define the linear range, the range of concentrations that the instrument gives a linear response. Outside this range, the response may taper off due to instrumental considerations, and the equation from the calibration cannot be used. This is known as the limit of linearity.
Limit of detection is the lowest amount that can be statistically determined from the noise. Generally this is defined as a signal that is 3 times the noise. The limit of detection can be calculated from the slope of the calibration curve and is generally defined as LOD=3*S.D./m, where S.D. is the standard deviation of the noise. The noise is measured by taking the standard deviation of multiple measurements. Alternatively, in one trace, noise can be estimated as the standard deviation of the baseline. The limit of quantitation is the amount that can be differentiated between samples and is usually defined as 10 times the noise.
1. Making the Standards: Serial Dilutions
2. Run the Samples for the Calibration Curve and the Unknown
3. Making the Calibration Curve
4. Results: Calibration Curve of Absorbance of Blue Dye #1
Figure 1. Calibration curves for UV-Vis absorbance of blue dye. Left: The absorbance was measured of different concentrations of blue dye #1. The responses level off after 10 µM, when the absorbance is over 1. The error bars are from repeated measurements of the same sample and are standard deviations. Right: The linear portion of the calibration curve is fit with a line, y=0.109*x + 0.0286. The unknown data is shown in black. Please click here to view a larger version of this figure.
Calibration curves are used in many fields of analytical chemistry, biochemistry, and pharmaceutical chemistry. It is common to use them with spectroscopy, chromatography, and electrochemistry measurements. A calibration curve can be used to understand the concentration of an environmental pollutant in a soil sample. It could be used determine the concentration of a neurotransmitter in a sample of brain fluid, vitamin in pharmaceutical samples, or caffeine in food. Thus, calibration curves are useful in environmental, biological, pharmaceutical, and food science applications. The most important part of making a calibration curve is to make accurate standard samples that are in a matrix that closely approximates the sample mixture.
An example of an electrochemistry calibration curve is shown below (Figure 2). The data were collected with an ion-selective electrode for fluoride. Electrochemical data follow the Nernst equation E=E0 + 2.03*R*T/(nF) * log C. Thus, the concentration data (x-axis) must be plotted on a log scale to obtain a line. This calibration curve could be used to measure the concentration of fluoride in toothpaste or drinking water.
Figure 2. Calibration curve for an ion-selective electrode. The response of a fluoride selective electrode (in mV) to different concentrations of fluoride is plotted. The expected equation for the electrode response is y (in mV)=-59.2*log x+b at 25 °C. The actual equation is y=-57.4*log x +56.38. The R2 value is 0.998. Please click here to view a larger version of this figure.
Skip to...
Videos from this collection:
Now Playing
Analytical Chemistry
797.1K Views
Analytical Chemistry
84.8K Views
Analytical Chemistry
204.9K Views
Analytical Chemistry
320.2K Views
Analytical Chemistry
623.8K Views
Analytical Chemistry
51.2K Views
Analytical Chemistry
25.4K Views
Analytical Chemistry
282.1K Views
Analytical Chemistry
384.8K Views
Analytical Chemistry
264.6K Views
Analytical Chemistry
94.0K Views
Analytical Chemistry
112.3K Views
Analytical Chemistry
87.2K Views
Analytical Chemistry
51.4K Views
Analytical Chemistry
125.3K Views
Copyright © 2025 MyJoVE Corporation. All rights reserved