JoVE Logo

S'identifier

The first human genome sequencing project cost $2.7 billion and was declared complete in 2003, after 15 years of international cooperation and collaboration between several research teams and funding agencies. Today, with the advent of next-generation sequencing technologies, the cost and time of sequencing a human genome have dropped over 100 fold.

Next-Generation Sequencing Methods

Although all next-generation methods use different technologies, they all share a set of standard features. Next-generation sequencing allows for the parallel sequencing of millions of fragments of DNA as opposed to the traditional sequencing methods. The pure genomic DNA is first fragmented into smaller fragments to make a sequencing library. This DNA library is then amplified for use in the actual sequencing reactions. While the reversible terminator sequencing method uses fluorescent dNTPs with a reversible terminator as a critical ingredient in the sequencing reaction, pyrosequencing utilizes the pyrophosphate released after the addition of each nucleotide. This pyrophosphate is appropriated for a light-generating reaction by the firefly luciferase enzyme, which can then be detected. Hence, both these methods work on the principle of ‘sequencing by synthesis.’ On the other hand, ‘sequencing by ligation’ methods rely on the specificity and sensitivity of DNA ligases towards mismatch base-pairing to decipher the nucleotide sequence of a DNA fragment.

Application of Next-Generation Sequencing

Next-generation sequencing methods are not solely applied to whole-genome sequencing. They are often used in the field of clinical diagnostics, epigenetics, metagenomics, epidemiology, and transcriptomics. Next-generation sequencing technologies also have the potential to be applied in personalized medicine to accelerate early detection and intervention of some disorders, including cancer.

Tags

Next generation SequencingHuman Genome SequencingCostTimeCollaborationInternational CooperationResearch TeamsFunding AgenciesNext generation Sequencing TechnologiesParallel SequencingDNA FragmentsSequencing LibraryReversible Terminator SequencingPyrosequencingSequencing By SynthesisSequencing By LigationNucleotide Sequence

Du chapitre 15:

article

Now Playing

15.13 : Next-generation Sequencing

Étudier l'ADN et l'ARN

86.2K Vues

article

15.1 : ADN recombinant

Étudier l'ADN et l'ARN

16.6K Vues

article

15.2 : Isolation de l’ADN

Étudier l'ADN et l'ARN

37.3K Vues

article

15.3 : Electrophorèse sur gel d’agarose d’ADN

Étudier l'ADN et l'ARN

94.7K Vues

article

15.4 : Sondes pour marquage de l'ADN

Étudier l'ADN et l'ARN

8.1K Vues

article

15.5 : Southern Blot

Étudier l'ADN et l'ARN

18.0K Vues

article

15.6 : micropuces ADN

Étudier l'ADN et l'ARN

17.1K Vues

article

15.7 : ADN complémentaire

Étudier l'ADN et l'ARN

5.5K Vues

article

15.8 : Hybridation in situ en fluorescence (FISH)

Étudier l'ADN et l'ARN

19.3K Vues

article

15.9 : PCR - Réaction en chaîne par polymérase

Étudier l'ADN et l'ARN

83.1K Vues

article

15.10 : RT-PCR en temps réel

Étudier l'ADN et l'ARN

56.6K Vues

article

15.11 : RACE - amplification rapide des extrémités d'ADNc par réaction en chaîne par polymérase

Étudier l'ADN et l'ARN

6.2K Vues

article

15.12 : Séquençage de Sanger

Étudier l'ADN et l'ARN

751.3K Vues

article

15.14 : Séquençage de l'ARN

Étudier l'ADN et l'ARN

9.7K Vues

article

15.15 : Annotation et assemblage du génome

Étudier l'ADN et l'ARN

18.7K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.